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Magnetic field and mechanical stress are the usual input variables of magneto-mechanical behaviour models. From a 2-scale
approach, we obtain a differential model by expressing the derivatives of the magnetization and the magnetostriction strain with
respect to the magnetic field and the mechanical stress. The original 2-scale model is then numerically inverted by Newton-Raphson
method in order to accept the magnetic flux density and the total strain as input variables.
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I. INTRODUCTION

MULTI-SCALE approaches allow to derive predictive
models to describe the complex magneto-elastic be-

haviour of ferromagnetic materials. The introduction of such
couplings coming from material behaviour in system modelling
has taken a growing importance as multiphysical solicitations
appear more strongly in high performance design. Indeed,
in many systems mechanical and magnetic phenomena must
be treated together in a single problem. A simplified multi-
scale approach using two scales (magnetic domain and single
crystal) was shown to be suitable for the simulation of systems
in association with a finite element solver for example [1],
[2]. This Simplified Multi-Scale Model (SMSM) is derived
from a more complete multi-scale approach [3] in order to
reduce computational cost. The SMSM naturally takes the
magnetic field ( ~H) and the mechanical stress (σ) as input
variables. However, in the simulation of systems by finite
element method, the magneto-mechanical problem is generally
expressed in terms of magnetic flux density ( ~B) and total
mechanical strain (ε) through the usual displacement and mag-
netic vector potential formulations. To solve the fully coupled
non-linear problem the model of material behaviour must
accept ~B and ε as input variables. We propose here a numerical
inversion of the SMSM: first the model is differentiated with
respect to the natural input variables and then the Newton-
Raphson method is applied.

II. DIFFERENTIAL SMSM

In the SMSM the material is modeled as a fictitious single
crystal made of a collection of magnetic domains randomly
oriented [4]. At the scale of a magnetic domain, the local
magnetization ( ~Mα) and magnetostriction strain (εµα) depend
only on the orientation of the magnetization (~α) in the do-
main and on the saturation magnetization (Ms) and maximum
magnetostrictive strain (λs). The local potential energy of the
domains oriented along ~α is the sum of a magnetic, an elastic
and anistropy contributions:

Wα =Wmag
α +W el

α +W an
α (1)

with
Wmag
α = −µ0

~H. ~Mα (2)

W el
α = −σ : εµα (3)

W an
α = J(~α.~β)2 (4)

and where µ0 is the vacuum permeability, ~H is the applied
magnetic field, σ is the applied stress tensor, ~β is the anistropy
direction and J is the anisotropy constant. The volume frac-
tion of each domain family (fα) is calculated assuming a
Boltzmann-type distribution [5] with respect to the domain
energies:

fα =
exp(−AsWα)∫
exp(−As.Wα)dα

(5)

Finally, the macroscopic anhysteretic magnetization and mag-
netostriction strains are obtained thanks to an averaging oper-
ation over all possible directions

~M =< ~Mα >=

∫
fα ~Mα dα (6)

εµ =< εµα >=

∫
fα ε

µ
α dα (7)

To obtain the differential model the derivatives of ~M and ε
with respect to the input variables ~H and σ are expressed
analytically. For example the differential susceptibility tensor,
which is the derivative of ~M with respect to ~H at constant
stress σ is obtained by differentiating (6). Because ~Mα and ~α
do not depend on the magnetic field, we have:

∂ ~H
~M =

∫
∂ ~Hfα ⊗ ~Mα dα (8)

It can be shown that the partial derivative of fα with respect
to ~H is:

∂ ~Hfα = As

(
−fα∂ ~HWα + fα

∫
fα∂ ~HWαdα

)
(9)



From equation (1) to (4), we also have:

∂ ~HWα = −µ0
~Mα (10)

Finally, the analytical expression for the differential suscepti-
bility is obtained as:

∂ ~H
~M = µ0As

(∫
fα ~Mα ⊗ ~Mα dα− ~M ⊗ ~M

)
(11)

It can be noticed from equation (11) that the differential
susceptibility tensor is proportional to the difference between
the tensor product of the macroscopic magnetization by itself
and the volume fraction weighted average of the tensor product
of the local magnetization by itself. The other components of
the differential model can be obtained in the same way:

∂σε
µ = As

(∫
fαε

µ
α ⊗ εµα dα− εµ ⊗ εµ

)
(12)

∂σ ~M = As

(∫
fαε

µ
α ⊗ ~Mα dα− εµ ⊗ ~M

)
(13)

∂ ~Hε
µ = Asµ0

(∫
fα ~Mα ⊗ εµα dα− ~M ⊗ εµ

)
(14)

The last two tensors are the same except for a factor µ0 and a
transposition, i.e., µ0∂σ ~Mijk = ∂ ~Hε

µ
jki. The set of equations

(11) to (14) constitutes the output of differential SMSM.

III. INVERSE MODEL

From the differential model, the inverse SMSM model can be
obtained numerically. Using Voigt’s notation for the stress and
strain tensors, the differential model can be written in matrix
form as:[
µ0d ~M
dεµ

]
=

[
µ0∂ ~H

~M µ0∂σ ~M
∂ ~Hε

µ ∂σε
µ

] [
d ~H
dσ

]
= F

[
d ~H
dσ

]
(15)

To inverse the model, we need to find
(
~H,σ

)
such that:

~B = µ0

(
~H + ~M

)
(16)

and
ε = Sσ + εµ (17)

where ~B and ε are the applied magnetic flux density and
total strain. Using Newton-Raphson method, an approximate
solution is found by solving iteratively:[

δ ~H
δσ

]
= −G−1

[
δ ~B
δε

]
(18)

where
G =

[
µ0I1 0
0 S

]
+ F (19)

and
[
δ ~B
δε

]
is the residual. For the numerical evaluation, the

integral terms appearing in the SMSM and in the differential
model are computed as discrete sums over a set of 2562 almost
uniformly distributed possible orientations [3]. The iterative
Newton-Raphson procedure is stopped when the relative vari-
ation of the norm of the residual is less than 10−4 or when the
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Fig. 1. Map of (a) ∂ε ~Hxxx (106 A/m) and (b) number of iterations of the
Newton-Raphson algorithm, as a function of components ~Bx and ~By of the
magnetic flux density

number of iterations exceeds 30. The parameters used for the
model are given in Table I. As an example, we show the map of

TABLE I
PARAMETERS FOR THE MULTISCALE MODEL.

As(m
3/J) Ms(A/m) λs J(J/m3)

10−2 1.6 106 10−5 0

the (x, x, x) component of tensor ∂ε ~H with respect to the x−
and y−components of the induction flux density obtained from
the inverse model and the corresponding number of iterations
(Fig. 1). The maps are obtained by nested loops incrementing
the component of the magnetic flux density (y−component is
incremented in the inner loop), starting from ~B = 0 and using
last solution as initial guess in the iterative process. The maps
show the expected behaviour. It can be seen that the number of
iterations is generally low (less than 5) but that the algorithm
does not converge when the material is highly saturated.

IV. CONCLUSION

The approach proposed here allows the numerical inversion
of the 2-scale model of magneto-elastic behaviour. With this
inverse model in hand, coupled magneto-elastic simulation of
systems using classical formulations can be managed. Conver-
gence of the material model might not be reached in highly
saturated regions which would require a special treatment.
Next step on the way will be the application to finite element
simulations.
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